An optimized instance based learning algorithm for estimation of compressive strength of concrete
نویسنده
چکیده
This article proposes an optimized instance-based learning approach for prediction of the compressive strength of high performance concrete based on mix data, such as water to binder ratio, water content, super-plasticizer content, fly ash content, etc. The base algorithm used in this study is the k nearest neighbor algorithm, which is an instance-based machine leaning algorithm. Five different models were developed and analyzed to investigate the effects of the number of neighbors, the distance function and the attribute weights on the performance of the models. For each model a modified version of the differential evolution algorithm was used to find the optimal model parameters. Moreover, two different models based on generalized regression neural network and stepwise regressions were also developed. The performances of the models were evaluated using a set of high strength concrete mix data. The results of this study indicate that the optimized models outperform those derived from the standard k nearest neighbor algorithm, and that the proposed models have a better performance in comparison to generalized regression neural network, stepwise regression and modular neural networks models. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
EVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE
Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملCompressive strength assessment of concrete containing metakaolin using ANN
Artificial neural networks (ANNs) as a powerful approach have been widely utilized to demonstrate some of the engineering problems. A three-layer ANN including three neurons in the hidden layer is considered to produce a verified pattern for assessing the compressive strength of concrete incorporating metakaolin (MK). For this purpose, an extensive database including 469 experimental specimens ...
متن کاملANFIS–TLBO HYBRID APPROACH TO PREDICT COMPRESSIVE STRENGTH OF RECTANGULAR FRP COLUMNS
Today, due to the complexity of engineering problems and at the same time the advancement of computer science, the use of machine learning (ML) methods and soft computing methods in solving engineering problems has been considered by many researchers. These methods can be used to find accurate estimates for problems in various scientific fields. This paper investigates the effectiveness of the ...
متن کاملA New Method for Forecasting Uniaxial Compressive Strength of Weak Rocks
The uniaxial compressive strength of weak rocks (UCSWR) is among the essential parameters involved for the design of underground excavations, surface and underground mines, foundations in/on rock masses, and oil wells as an input factor of some analytical and empirical methods such as RMR and RMI. The direct standard approaches are difficult, expensive, and time-consuming, especially with highl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eng. Appl. of AI
دوره 25 شماره
صفحات -
تاریخ انتشار 2012